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Abstract
With respect to which quantum number they are shape-invariant, most of the
one-dimensional shape invariance potentials fall into two classes, for each of
which one of the quantum numbers describing the shape invariance is assigned.
On this basis, the shape invariance parameters of every class are separately
described in terms of a master function, its weight function and an appropriate
quantum number.

PACS numbers: 11.30.Pb, 03.65.Fd

There are a large number of one-dimensional quantum mechanical systems whose spectra
and wavefunctions are exactly solvable. The most well known of these is the quantum
harmonic oscillator [1]. There are other solvable systems with, say, a Morse potential, Scarf
potential, Eckart potential, and many others [2]. These solvable potentials have established
a close connection with the pioneering work of Infeld and Hull [3] on factorization and the
algebraic solution of bound state problems. In fact, some three decades after the work of
Infeld and Hull, factorizability and shape invariance were introduced by Witten, Gendenshtein
and others [4] as an important aspect of these potentials in the framework of supersymmetric
quantum mechanics. Of course, the property of supersymmetry as an approach to solvability as
such has so far produced many useful results in physics. Shape invariance symmetry provides
the possibility of exactly determining the corresponding wavefunction of the problem, using an
algebraic procedure. The corresponding Schrödinger equation for these problems factorizes
out into the product of raising and lowering operators, and the energy eigenfunctions of the
system transform into each other with the help of these operators [5].

However, it was shown that a wide range of shape invariance potentials lie in two different
classes [6, 7]. In the first class, which was obtained from factorization of the Schrödinger
equation with respect to the main quantum number, the superpotential was explained in terms
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of the master function, the corresponding weight function, and also the main quantum number
n [6]. The second class was derived from factorizing the Schrödinger equation with respect
to the secondary quantum number m, and the superpotential was explained in terms of the
master function, its weight function, and also the secondary quantum number m [7]. Such a
classification for shape invariance potentials arises from introducing the master function and
the corresponding weight function for special functions in mathematical physics. The master
function has proved so powerful that even some approaches to solving quantum mechanical
problems in two and three dimensions have been introduced [8]. By temporarily neglecting the
works of [6] and [7], we see that the problems of shape invariance potentials have so far been
speculated and solved by imposing the shape invariance relation on the parameters which also
bear the name of shape invariance parameters [9–14]. Now, in this paper, we try to describe
these shape invariance parameters for the above-mentioned two superpotential classes in terms
of the master function, its corresponding weight function, and also the quantum numbers of
each of the two classes. Therefore, it seems most appropriate to review once again the subject
of the master function and its approach to these two classes of shape invariance potentials.

In previous papers [7,15], the master function A(x) was introduced as a polynomial of at
most degree two, and a corresponding non-negative weight functionW(x) in the same interval
(a, b), so that, for a given master function A(x), the weight function is so chosen that the
expression (1/W(x))(d/dx)(A(x)W(x)) is a polynomial of degree at most one, and the end
points of the interval (a, b) are so chosen that the expression A(x)W(x), together with all its
derivatives, are zero at these points. It has been proven that the polynomials �n(x) of degree
n with a Rodrigues representation

�n(x) = an

W(x)

(
d

dx

)n
(An(x)W(x)) (1)

are orthogonal with respect to the scalar product defined by the non-negative weight function
W(x) in the interval (a, b). The constant an is fixed by the normalization condition. These
orthogonal polynomials are the well-known special functions of mathematical physics which
are obtained from different choices for the master function and its weight functions, e.g.
Jacobi polynomials, hypergeometric polynomials, Hermite polynomials, etc. The second-
order differential equation in which the polynomials �n(x) are satisfied is

A(x)�′′
n(x) +

(A(x)W(x))′

W(x)
�′
n(x)−

[
n

(
A(x)W ′(x)
W(x)

)′
+
n(n + 1)

2
A′′(x)

]
�n(x) = 0

n = 0, 1, 2, . . . (2)

where the prime means differentiation with respect to x. By differentiating the differential
equation (2) m times with respect to x and then multiplying it by (−1)mAm/2(x), one obtains
a new differential equation of order two, called the associated differential equation:

A(x)�′′
n,m(x) +

(A(x)W(x))′

W(x)
�′
n,m(x)+

[
− 1

2
(n2 +n−m2)A′′(x) + (m− n)

(
A(x)W ′(x)
W(x)

)′

−m
2

4

A′2(x)
A(x)

− m

2

A′(x)W ′(x)
W(x)

]
�n,m(x) = 0 m = 0, 1, 2, . . . , n. (3)

Solutions of the differential equation (3), called the associated special functions related
to the master function A(x) and the weight function W(x), have the following Rodrigues
representation:

�n,m(x) = an(−1)m

Am/2(x)W(x)

(
d

dx

)n−m
(An(x)W(x)). (4)
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The shape-invariant equations with respect to the parameter n were derived in [6] by
factorization performed on differential equation (2) [15]:

B(n)A(n)ψn(x) = E(n)ψn(x)

A(n)B(n)ψn−1(x) = E(n)ψn−1(x)
(5)

where the factorization spectrum, E(n), is

E(n) = n

4
[(
A(x)W ′(x)
W(x)

)′
+ nA′′(x)

]2

{
4

(
A(x)W ′(x)
W(x)

)′2(
nA′2(0)− A(0)

(
A(x)W ′(x)
W(x)

)′)

−
(
AW ′

W

)
(0)

(
A′′(x)

(
AW ′

W

)
(0)− 2A′(0)

(
A(x)W ′(x)
W(x)

)′)

×
(

2

(
A(x)W ′(x)
W(x)

)′
+ nA′′(x)

)

+n2A′′(0)
(
A′2(0)− 2A′′(0)A(0)

)(
nA′′(0) + 4

(
A(x)W ′(x)
W(x)

)′)

−10nA(0)A′′(x)
(
A(x)W ′(x)
W(x)

)′2}
. (6)

The one-indicial functions ψn(x) are obtained as a multiplier of the orthogonal polynomials
�n(x):

ψn(x) = W 1/2(x)�n(x). (7)

The raising and lowering operators of the parameter n, that is, A(n) and B(n) respectively,
which are adjoint to each other, have the following explicit form in terms of the master function
and the weight function:

B(n) = A(x)
d

dx
+

1

2

[
nA′(x) +

A(x)W ′(x)
W(x)

+ n
A′(0)

(
A(x)W ′(x)
W(x)

)′ − A′′(x)
(
AW ′
W

)
(0)(

A(x)W ′(x)
W(x)

)′
+ nA′′(x)

]

A(n) = −A(x) d

dx
+

1

2

[
nA′(x) +

A(x)W ′(x)
W(x)

+ n
A′(0)

(
A(x)W ′(x)
W(x)

)′ − A′′(x)
(
AW ′
W

)
(0)(

A(x)W ′(x)
W(x)

)′
+ nA′′(x)

]
.

(8)

We also recall that in [7] the differential equation (3) was factorized as a product of the
raising and lowering operators of the parameterm, from which the shape invariance equations
with respect to the parameter m were thus obtained:

B(m)A(m)ψn,m(x) = E(n,m)ψn,m(x)

A(m)B(m)ψn,m−1(x) = E(n,m)ψn,m−1(x)
(9)

with the following spectrum:

E(n,m) = −(n−m + 1)

[(
A(x)W ′(x)
W(x)

)′
+

1

2
(n +m)A′′(x)

]
. (10)

The two-indicial functions ψn,m(x) are obtained as a multiplier of the associated special
functions:

ψn,m(x) = A1/4(x)W 1/2(x)�n,m(x). (11)
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The raising and the lowering operators of the parameterm, that is, B(m) and A(m), which are
adjoint to each other, have the following explicit form:

B(m) =
√
A(x)

d

dx
−

A(x)W ′(x)
2W(x) + 2m−1

4 A′(x)
√
A(x)

A(m) = −
√
A(x)

d

dx
−

A(x)W ′(x)
2W(x) + 2m−1

4 A′(x)
√
A(x)

.

(12)

We now return to the subject of shape invariance with respect to the parameter n, and
conclude the discussion of the one-dimensional quantum solvable models with the shape
invariance parameter αn. For this purpose, while using the following change of variable:

dy = dx

A(x)
(13)

in equations (5), and renaming the raising and lowering operators B(n) and A(n) by A†(αn)

and A(αn) respectively, we obtain

A†(αn)A(αn)ψn(y) = E(n)ψn(y)

A(αn)A
†(αn)ψn−1(y) = E(n)ψn−1(y).

(14)

The corresponding factorization operators of equation (14) are

A†(αn) = d

dy
+W(y, αn)

A(αn) = − d

dy
+W(y, αn).

(15)

We thus see that equations (14) are the Schrödinger equations (h̄ = 2m = 1)with the following
superpotential and wavefunction:

W(y, αn) = K(n) +
1

2

[
nA′(x) +

A(x)W ′(x)
W(x)

]
x=x(y)

(16)

ψn(y) = [W 1/2(x)�n(x)]x=x(y) (17)

with

K(n) = n

2

A′(0)
(
A(x)W ′(x)
W(x)

)′ − A′′(x)
(
AW ′
W

)
(0)(

A(x)W ′(x)
W(x)

)′
+ nA′′(x)

where the explicit form of the change of variable x = x(y), substituted in equations (16)
and (17), is obtained from solving the first-order differential equation (13). Now, as a quantum
number in the Schrödinger equations (14), n distinguishes wave mechanical states from each
other, and we call it the main quantum number. The Schrödinger equations (14) have the
following partner potentials in the one-dimensional y space:

V±(y, αn) = W 2(y, αn)± d

dy
W(y, αn)

=
[

1

4

(
nA′(x) +

A(x)W ′(x)
W(x)

)2

+K(n)

(
nA′(x) +

A(x)W ′(x)
W(x)

)

±1

2

(
nA′′(x) +

(
A(x)W ′(x)
W(x)

)′)
A(x)

]
x=x(y)

+K2(n). (18)
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For the partner potentials V+(y, αn) and V−(y, αn+1) equations (14) also describe the shape
invariance condition in the following form:

R(αn) := V+(y, αn)− V−(y, αn+1)

= E(n)− E(n + 1). (19)

With the help of equation (6) one can calculate the explicit form of equation (19) in terms
of the master function, the weight function, and the main quantum number n. On the other
hand, if the explicit functionality of R(αn) is determined from αn, one can calculate αn as
the shape invariance parameter in terms of the master function, the weight function, and the
main quantum number n. Hence, one can consider the operators A†(αn), A(αn) and the
superpotential W(y, αn), and also the partner potentials V±(y, αn), to depend on the shape
invariance parameter αn through the quantum number n. If, as usual, we relate the subtraction
(19) by a linear relation to the shape invariance parameter αn then, generally speaking, the
relation between αn and nwill be nonlinear for any master functionA(x). Therefore, the shape
invariance parametersαn andαn−1 will be neither related to each other by a shift nor by a scaling.
According to the table in [6] these shape invariance models are those for which A′′(x) �= 0
and A′(0)(A(x)W ′(x)/W(x))′ −A′′(0)(AW ′/W)(0) �= 0. According to equation (6), for the
special cases for which

A′′(x) = 0 (20a)

or

A′(0)
(
A(x)W ′(x)
W(x)

)′
− A′′(0)

(
AW ′

W

)
(0) = 0 (20b)

we get

R(αn) =




A(0)

(
A(x)W ′(x)
W(x)

)′
− A′(0)

AW ′

W
(0)

−(2n + 1)A′2(0) for (20a)

A(0)

(
A(x)W ′(x)
W(x)

)′
− 1

2
A′(0)

AW ′

W
(0)

−2n + 1

4
(A′2(0)− 2A′′(0)A(0)) for (20b)

(21)

where, of course, for the special case A(x) = 1, conditions (20a) and (20b) are equal. It is
clear that only in the special cases (20a) and/or (20b) will the relation between R(αn) and n
be linear. Therefore, by defining the linear relation between the shape invariance parameters
αn and R(αn) in these special cases as [14]

αn = 1
2 (1 + R(αn)) (22)

one can calculate it in terms of the master function A(x), the weight function W(x), and the
main quantum number n:

αn =




1

2

[
A(0)

(
A(x)W ′(x)
W(x)

)′
− A′(0)

AW ′

W
(0)

−(2n + 1)A′2(0) + 1

]
for (20a)

1

2

[
A(0)

(
A(x)W ′(x)
W(x)

)′
− 1

2
A′(0)

AW ′

W
(0)

−2n + 1

4

(
A′2(0)− 2A′′(0)A(0)

)
+ 1

]
for (20b)

(23)
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or

αn =
{
αn−1 − A′2(0) for (20a)

αn−1 − 1
4 (A

′2(0)− 2A′′(0)A(0)) for (20b).
(24)

Hence, it is clear from the table in [6] that in the case of a shifted oscillator (A(x) = 1)
the shape invariance parameter αn is constant, but for the Morse potential (A(x) = x) the
shape invariance parameter reduces by one unit. Also, for the Rosen–Morse II potential
(A(x) = 1 − x2 with weight function W(x) = (1 − x2)α , α > −1) and for the Eckhart
potential (A(x) = x2 − 1 with weight function W(x) = (x2 − 1)2k , k ∈ {0, 1, 2, . . .}) the
value of the shift for the shape invariance parameter αn is −1. But, for quantum solvable
models corresponding toA(x) = x(1−x)with weight functionW(x) = xα(1−x)α , α > −1
and A(x) = x(1 + x) with weight function W(x) = x2k(1 + x)2k , k ∈ {0, 1, 2, . . .} the value
of the shift for the shape invariance parameter is −1/4.

For the cases in whichA′′(x) �= 0 andA′(0)(A(x)W ′(x)/W(x))′−A′′(0)(AW ′/W)(0) �=
0, equation (22) does not lead to a linear relation between αn and n. This indicates that, in the
general case, the master function approach to the solution of the shape invariance potentials
(with respect to the main quantum number n) is an approach which is not obtainable with
the use of an appropriate definition for shape invariance parameter such that it changes either
by a shift or by a scaling. However, these solutions do exist, as proven in [6]. Therefore,
apart from expressing the shape invariance parameter αn in terms of the master functionA(x),
the weight function W(x) and the main quantum number n, in general, the subject of shape
invariance holds as ever, in the sense that the result of the expression V+(y, αn)− V−(y, αn+1)

in equation (19) is certainly an expression which is independent of y.
In the general framework of shape invariance, we pay attention to the point that this class

of solvable models is also calculable by the algebraic method although the explicit form of
the parameter αn in terms of the specifications of the potential may not be used. From the
shape invariance relation (19) the spectrum of the nth quantum state is obtained in terms of
the spectra of the ground state E(0):

E(n) = E(0)−
n−1∑
k=0

R(αk). (25)

The shape invariance equations (14) yield the following relation for the raising and lowering
of the one-dimensional wavefunction ψn(y) with respect to the parameter n:

A†(αn)ψn−1(y) =
√√√√E(0)−

n−1∑
k=0

R(αk)ψn(y) (26a)

A(αn)ψn(y) =
√√√√E(0)−

n−1∑
k=0

R(αk)ψn−1(y). (26b)

For n = 0, equation (26b) gives a differential equation of first order for the ground stateψ0(y):

A(α0)ψ0(y) = 0 (27)

whose solution, with the help of equation (13), is

ψ0(y) = a0[W 1/2(x)]x=x(y). (28)

Now, by making use of equation (26a), one can calculate algebraically all other quantum states
from the ground state ψ0(y) as if this had been done by the shape invariance parameters αn:

ψn(y) = A†(αn)√
E(0)−�n−1

k=0R(αk)

· · · A†(α2)√
E(0)−�1

k=0R(αk)

A†(α1)√
E(0)− R(α0)

ψ0(y). (29)
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Now we return to the second class of one-dimensional quantum solvable models described
by the shape invariance parameter βm. Imposing the following change of variable on the shape
invariance relations (9):

dy = dx√
A(x)

(30)

the factorized one-dimensional Schrödinger equations (h̄ = 2m = 1) are written in the
following form:

A†(βm)A(βm)ψn,m(y) = E(n,m)ψn,m(y)

A(βm)A
†(βm)ψn,m−1(y) = E(n,m)ψn,m−1(y)

(31)

where the raising and lowering operators A†(βm) and A(βm) are the renamed operators of
B(m) and A(m):

A†(βm) = d

dy
+W(y, βm)

A(βm) = − d

dy
+W(y, βm).

(32)

The superpotential W(y, βm) and the wavefunction ψn,m(y) are thus obtained:

W(y, βm) = −
[
A(x)W ′(x)

2W(x) + 2m−1
4 A′(x)

√
A(x)

]
x=x(y)

(33)

ψn,m(y) = [
A1/4(x)W 1/2(x)�n,m(x)

]
x=x(y) (34)

where the explicit form of the change of variable x = x(y) is obtained by solving the first-order
differential equation (30). We note that, next ton,m is also a number that distinguishes between
the quantum states. For this reason, we callm the secondary quantum number. Equations (31)
are the Schrödinger equations in one-dimensional space with coordinate y (obtained from
equation (30)). Their corresponding partner potentials are respectively

V±(y, βm) = W 2(y, βm)± d

dy
W(y, βm)

=
[

1

4A(x)

(
A(x)W ′(x)
W(x)

)2

+
(2m− 1)(2m− 1 ± 2)

16

A′2(x)
A(x)

+
2m− 1 ± 1

4

A′(x)W ′(x)
W(x)

∓ 1

2

(
A(x)W ′(x)
W(x)

)′
∓ 2m− 1

4
A′′(x)

]
x=x(y)

. (35)

By subtracting the shape invariance equations (31), we obtain the shape invariance condition
on the partner potentials V+(y, βm) and V−(y, βm+1):

R(βm) := V+(y, βm)− V−(y, βm+1)

= E(n,m)− E(n,m + 1)

= −mA′′(x)−
(
A(x)W ′(x)
W(x)

)′
. (36)

With the following choice for the functionality of the shape invariance parameter [14]:

βm = 1
2 (1 + R(βm)) (37)

we obtainβm in terms of the master functionA(x), the weight functionW(x), and the secondary
quantum number m as

βm = 1

2

[
−

(
A(x)W ′(x)
W(x)

)′
−mA′′(x) + 1

]
(38)
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or

βm = βm−1 − 1
2A

′′(x). (39)

Now, because of relation (38), one can consider the operators A†(βm), A(βm), the
superpotential W(y, βm), and the partner potentials V±(y, βm) to be functions of βm through
the secondary quantum number m. It is clear that, in this case, the functionality of the shape
invariance parameter βm from the secondary quantum number m is linear. Upon referring
to table 1 of [7] one can see that, for the shifted oscillator potentials (A(x) = 1) and the
three-dimensional oscillator (A(x) = x), the shape invariance parameter βm is constant
and does not shift. However, for the Morse potential (A(x) = x2), the Scarf II potential
(A(x) = 1 + x2), the generalized Pöschl–Teller potential (A(x) = x2 − 1), and the Natanzon
potential (A(x) = 4x2 − 1) the value of the shift for the shape invariance parameter is −1,
except for the last case which is −2. For the Scarf I potential (A(x) = x(1 − x)) and for
A(x) = 1 − x2 the shape invariance parameter shift is +1.

The shape invariance relation (36) expresses the mth quantum state spectrum in terms of
the ground state spectrum E(n, 0) by the following relation:

E(n,m) = E(n, 0)−
m−1∑
k=0

R(βk)

= E(n, 0) +m

(
1

2
(m− 1)A′′(x) +

(
A(x)W ′(x)
W(x)

)′)
. (40)

From the shape invariance relations (31) one can obtain the raising and lowering relations of
the one-dimensional wavefunction ψn,m(y) in terms of the parameter m in the following way:

A†(βm)ψn,m−1(y) =
√
E(n, 0)−�m−1

k=0 R(βk)ψn,m(y) (41a)

A(βm)ψn,m(y) =
√
E(n, 0)−�m−1

k=0 R(βk)ψn,m−1(y). (41b)

For m = n + 1, equation (41a) yields

A†(βn+1)ψn,n(y) = 0. (42)

The highest secondary quantum state, according to the first-order differential equation (42), is
given by

ψn,n(y) = an(−1)n[W 1/2(x)A(2n+1)/4(x)]x=x(y). (43)

Now, with the help of equation (41b), one can algebraically obtain all the corresponding
wavefunctions of the other quantum states using the information embedded in the shape
invariance parameters βm

ψn,m(y) = A(βm+1)√
E(n, 0)−�m

k=0R(βk)
· · · A(βn−1)√

E(n, 0)−�n−2
k=0R(βk)

× A(βn)√
E(n, 0)−�n−1

k=0R(βk)

ψn,n(y). (44)

In conclusion, we see that most of the shape invariance potentials are classified into two
classes, whether they are shape invariant with respect to the main quantum number n, or to
the secondary quantum number m. The property of shape invariance, however, implies the
existence of a shape invariance parameter, which is αn for the first class and βm for the second
one. In each of these distinct cases the shape invariance parameter is expressible in terms
of the master function, its weight function, and the quantum number with respect to which
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the factorization has been done. For the shape invariance potentials corresponding to the
main quantum number n, for every master function A(x), the shape invariance parameter αn
does not necessarily vary linearly with n. But for shape invariance potentials corresponding
to the secondary quantum number m, for every master function A(x) the shape invariance
parameter βm necessarily varies linearly with m. With regard to the solvable shape invariance
models discussed in this paper the parameters αn and βm take their role in describing the shape
invariance from the quantum numbers n andm, and even the principal role of describing shape
invariance is up to the quantum numbers n and m.
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